- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources4
- Resource Type
-
0000000004000000
- More
- Availability
-
40
- Author / Contributor
- Filter by Author / Creator
-
-
Chan, Kenneth (4)
-
Gaddis, Jason (2)
-
Won, Robert (2)
-
Chan, Daniel (1)
-
Ingalls, Colin (1)
-
Jabbusch, Kelly (1)
-
Kovács, Sándor J. (1)
-
Kulkarni, Rajesh (1)
-
Lerner, Boris (1)
-
Nanayakkara, Basil (1)
-
Okawa, Shinnosuke (1)
-
Van den Bergh, Michel (1)
-
Young, Alexander (1)
-
Zhang, James (1)
-
Zhang, James J (1)
-
Zhang, James J. (1)
-
de Thanhoffer de Völcsey, Louis (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
- Filter by Editor
-
-
Zeev Rudnick (1)
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Zeev Rudnick (Ed.)Abstract We introduce the ozone group of a noncommutative algebra $$A$$, defined as the group of automorphisms of $$A$$, which fix every element of its center. In order to initiate the study of ozone groups, we study polynomial identity (PI) skew polynomial rings, which have long proved to be a fertile testing ground in noncommutative algebra. Using the ozone group and other invariants defined herein, we give explicit conditions for the center of a PI skew polynomial ring to be Gorenstein (resp. regular) in low dimension.more » « less
-
Chan, Daniel; Chan, Kenneth; de Thanhoffer de Völcsey, Louis; Ingalls, Colin; Jabbusch, Kelly; Kovács, Sándor J.; Kulkarni, Rajesh; Lerner, Boris; Nanayakkara, Basil; Okawa, Shinnosuke; et al (, Mathematische Zeitschrift)
-
Chan, Kenneth; Gaddis, Jason; Won, Robert; Zhang, James J. (, Selecta Mathematica)
-
Chan, Kenneth; Young, Alexander; Zhang, James (, Algebra & Number Theory)
An official website of the United States government
